Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Medrano, Ignacio
dc.contributor.authorTello Guijarro, Jorge
dc.contributor.authorBelda, Cristóbal
dc.contributor.authorUreña, Alberto
dc.contributor.authorSalcedo, Ignacio
dc.contributor.authorEspinosa-Anke, Luis
dc.contributor.authorSaggion, Horacio
dc.date2018-03
dc.date.accessioned2021-09-27T09:09:25Z
dc.date.available2021-09-27T09:09:25Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11903
dc.description.abstractHealth information grows exponentially (doubling every 5 years), thus generating a sort of inflation of science, i.e. the generation of more knowledge than we can leverage. In an unprecedented data-driven shift, today doctors have no longer time to keep updated. This fact explains why only one in every five medical decisions is based strictly on evidence, which inevitably leads to variability. A good solution lies on clinical decision support systems, based on big data analysis. As the processing of large amounts of information gains relevance, automatic approaches become increasingly capable to see and correlate information further and better than the human mind can. In this context, healthcare professionals are increasingly counting on a new set of tools in order to deal with the growing information that becomes available to them on a daily basis. By allowing the grouping of collective knowledge and prioritizing “mindlines” against “guidelines”, these support systems are among the most promising applications of big data in health. In this demo paper we introduce Savana, an AI-enabled system based on Natural Language Processing (NLP) and Neural Networks, capable of, for instance, the automatic expansion of medical terminologies, thus enabling the re-use of information expressed in natural language in clinical reports. This automatized and precise digital extraction allows the generation of a real time information engine, which is currently being deployed in healthcare institutions, as well as clinical research and management.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 7
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2613es_ES
dc.rightsopenAccesses_ES
dc.subjectartificial intelligencees_ES
dc.subjectmachine learninges_ES
dc.subjectNLPes_ES
dc.subjectelectronic recordses_ES
dc.subjecte-healthes_ES
dc.subjectIJIMAIes_ES
dc.titleSavana: Re-using Electronic Health Records with Artificial Intelligencees_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2017.03.001


Ficheros en el ítem

No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem