• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem

    Detection of Lung Nodules on Medical Images by the Use of Fractal Segmentation

    Autor: 
    Rezaie, Afsaneh Abdollahzadeh
    ;
    Habiboghli, Ali
    Fecha: 
    09/2017
    Palabra clave: 
    segmentation; tumor; cancer; fractal theory; medicine; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11782
    DOI: 
    http://doi.org/10.9781/ijimai.2017.452
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2589
    Open Access
    Resumen:
    In the present paper, a method for the detection of malignant and benign tumors on the CT scan images has been proposed. In the proposed method, firstly the area of interest in which the tumor may exist is selected on the original image and by the use of image segmentation and determination of the image’s threshold limit, the tumor’s area is specified and then edge detection filters are used for detection of the tumor’s edge. After detection of area and by calculating the fractal dimensions with less percent of errors and better resolution, the areas where contain the tumor are determined. The images used in the proposed method have been extracted from cancer imaging archive database that is made available for public. Compared to other methods, our proposed method recognizes successfully benign and malignant tumors in all cases that have been clinically approved and belong to the database.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_5_2_pdf_65326.pdf
    Tamaño: 679.3Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 5, september 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    16
    36
    42
    96
    101
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    6
    40
    43
    68
    108

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification 

      Asif Razzaq, Muhammad; Villalonga, Claudia ; Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)
      The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ...
    • Analyzing the EEG Signals in Order to Estimate the Depth of Anesthesia using Wavelet and Fuzzy Neural Networks 

      Esmaeilpour, Mansour; Mohammadi, Ali Reis Ali (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      Estimating depth of Anesthesia in patients with the objective to administer the right dosage of drug has always attracted the attention of specialists. To study Anesthesia, researchers analyze brain waves since this is the ...
    • An Efficient Fake News Detection System Using Contextualized Embeddings and Recurrent Neural Network 

      Ali Reshi, Junaid; Ali, Rashid (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2024)
      Fake news is detrimental for society and individuals. Since the information dissipation through online media is too quick, an efficient system is needed to detect and counter the propagation of fake news on social media. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja