Mostrar el registro sencillo del ítem

dc.contributor.authorSamanta, Sidharth
dc.contributor.authorPanda, Mrutyunjaya
dc.contributor.authorRamasubbareddy, Somula
dc.contributor.authorSankar, S.
dc.contributor.authorBurgos, Daniel (1)
dc.description.abstractEarth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms. The progression of deep learning and computer vision methods and the availability of heterogeneous multispectral remote sensing data make the field more fertile for research. With the evolution of optical sensors, aerial images are becoming more precise and larger, which leads to a new kind of problem for object detection algorithms. This paper proposes the “Sliding Region-based Convolutional Neural Network (SRCNN),” which is an extension of the Faster Region-based Convolutional Neural Network (RCNN) object detection framework to make it independent of the image's spatial resolution and size. The sliding box strategy is used in the proposed model to segment the image while detecting. The proposed framework outperforms the state-of-the-art Faster RCNN model while processing images with significantly different spatial resolution values. The SRCNN is also capable of detecting objects in images of any size.es_ES
dc.publisherComputers, materials and continuaes_ES
dc.relation.ispartofseries;vol. 68, nº 2
dc.subjectcomputer visiones_ES
dc.subjectconvolutional neural networkes_ES
dc.subjectdeep learninges_ES
dc.subjectfaster RCNNes_ES
dc.subjectmultispectral imageses_ES
dc.subjectobject detectiones_ES
dc.subjectremote sensinges_ES
dc.subjectsliding box strategyes_ES
dc.titleSpatial-resolution independent object detection framework for aerial imageryes_ES
dc.typeArticulo Revista Indexadaes_ES

Ficheros en el ítem


No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem