Iterative methods and their dynamics with applications: A contemporary study
Autor:
Argyros, Ioannis K
; Magreñán, Á. Alberto (1)
Fecha:
2017Palabra clave:
Tipo de Ítem:
bookDirección web:
https://www.taylorfrancis.com/books/e/9781315153469Resumen:
Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
39 |
20 |
16 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Extending the domain of starting points for Newton's method under conditions on the second derivative
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ... -
Optimizing the applicability of a theorem by F. Potra for Newton-like methods
Magreñán, Á. Alberto (1); Argyros, Ioannis K (Applied Mathematics and Computation, 09/2014)We present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these ...