Mostrar el registro sencillo del ítem

dc.contributor.authorMaroju, P
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorSarría, Íñigo
dc.contributor.authorKumar, Abhimanyu
dc.date2020-01
dc.date.accessioned2020-06-16T08:10:41Z
dc.date.available2020-06-16T08:10:41Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10183
dc.description.abstractThis paper deal with the study of local convergence of fourth and fifth order iterative method for solving nonlinear equations in Banach spaces. Only the premise that the first order Frechet derivative fulfills the Lipschitz continuity condition is needed.Under these conditions, a convergence theorem is established to study the existence and uniqueness regions for the solution for each method. The efficacy of our convergence study is shown solving various numerical examples as a nonlinear integral equation and calculating the radius of the convergence balls. We compare the radii of convergence balls and observe that by our approach, we get much larger balls as existing ones. In addition, we also include the real and complex dynamic study of one of the methods applied to a generic polynomial of order two.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 58, nº 3
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs10910-019-01097-yes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectlocal convergencees_ES
dc.subjectBanach spaceses_ES
dc.subjectdynamices_ES
dc.subjecthammerstein type integral equationes_ES
dc.subjectFrechet derivativees_ES
dc.subjectparameter spaceses_ES
dc.subjectnumerical exampleses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleLocal convergence of fourth and fifth order parametric family of iterative methods in Banach spaceses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-019-01097-y


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem