• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2015
    • vol. 3, nº 4, september 2015
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2015
    • vol. 3, nº 4, september 2015
    • Ver ítem

    Ball convergence for Steffensen-type fourth-order methods

    Autor: 
    Argyros, Ioannis K
    ;
    George, Santhosh
    Fecha: 
    2015
    Palabra clave: 
    newton’s method; local convergence; steffensen-type method; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/10166
    DOI: 
    http://doi.org/10.9781/ijimai.2015.347
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2506
    Open Access
    Resumen:
    We present a local convergence analysis for a family of Steffensen-type fourth-order methods in order to approximate a solution of a nonlinear equation. We use hypotheses up to the first derivative in contrast to earlier studies such as [1], [5]-[28] using hypotheses up to the fifth derivative. This way the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20153_4_7_pdf_73265.pdf
    Tamaño: 10.21Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 3, nº 4, september 2015

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    29
    26
    47
    4
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    23
    27
    33
    1

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in banach spaces 

      Argyros, Ioannis K; Santhosh, George; Magreñán, Á. Alberto (1) (Journal of the Korean Mathematical Society, 01/2015)
      We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica. and Neta. These ...
    • Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high 

      Argyros, Ioannis K; George, Santhosh; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 07/2015)
      We present a local convergence analysis for general multi-point-Chebyshev-Halley-type methods (MMCHTM) of high convergence order in order to approximate a solution of an equation in a Banach space setting. MMCHTM includes ...
    • Extending the mesh independence for solving nonlinear equations using restricted domains 

      Argyros, Ioannis K; Sheth, Soham M.; Younis, Rami M.; Magreñán, Á. Alberto (1); George, Santhosh (International Journal of Applied and Computational Mathematics, 12/2017)
      The mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja