Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorGeorge, Santhosh
dc.date2015
dc.date.accessioned2020-06-12T07:59:05Z
dc.date.available2020-06-12T07:59:05Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10166
dc.description.abstractWe present a local convergence analysis for a family of Steffensen-type fourth-order methods in order to approximate a solution of a nonlinear equation. We use hypotheses up to the first derivative in contrast to earlier studies such as [1], [5]-[28] using hypotheses up to the fifth derivative. This way the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 3, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2506es_ES
dc.rightsopenAccesses_ES
dc.subjectnewton’s methodes_ES
dc.subjectlocal convergencees_ES
dc.subjectsteffensen-type methodes_ES
dc.subjectIJIMAIes_ES
dc.titleBall convergence for Steffensen-type fourth-order methodses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2015.347


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem