Mostrar el registro sencillo del ítem

dc.contributor.authorAmorós, Cristina (1)
dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorRegmi, Samundra
dc.contributor.authorGonzález-Crespo, Rubén (1)
dc.contributor.authorSicilia, Juan Antonio (1)
dc.date2020-01
dc.date.accessioned2020-05-26T07:49:10Z
dc.date.available2020-05-26T07:49:10Z
dc.identifier.issn2227-7390
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10097
dc.description.abstractStirling's method is considered as an alternative to Newton's method when the latter fails to converge to a solution of a nonlinear equation. Both methods converge quadratically under similar convergence criteria and require the same computational effort. However, Stirling's method has shortcomings too. In particular, contractive conditions are assumed to show convergence. However, these conditions limit its applicability. The novelty of our paper lies in the fact that our convergence criteria do not require contractive conditions. Hence, we extend its applicability of Stirling's method. Numerical examples illustrate our new findings.es_ES
dc.language.isoenges_ES
dc.publisherMathematicses_ES
dc.relation.ispartofseries;vol. 18, nº 1
dc.relation.urihttps://www.mdpi.com/2227-7390/8/1/35es_ES
dc.rightsopenAccesses_ES
dc.subjectStirling’s methodes_ES
dc.subjectNewton’s methodes_ES
dc.subjectconvergencees_ES
dc.subjectFréchet derivativees_ES
dc.subjectbanach spacees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExtending the Applicability of Stirling's Methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.3390/math8010035


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem