Mostrar el registro sencillo del ítem
Supertasks, Physics and the Axiom of Infinity
dc.contributor.author | Leon-Sanchez, Antonio | |
dc.contributor.author | León-Mejía, Ana | |
dc.date | 2016 | |
dc.date.accessioned | 2020-05-22T11:17:01Z | |
dc.date.available | 2020-05-22T11:17:01Z | |
dc.identifier.isbn | 978-3-319-45980-6 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10090 | |
dc.description.abstract | It seems reasonable to assume that mathematical infinity was not the objective of Zeno’s dichotomy (in any of its variants); however, some kind of mathematical infinity was already at stake in his celebrated arguments. Aristotle proposed a solution to Zeno’s dichotomy by introducing what we now call one-to-one correspondences, the key instrument of modern infinitist mathematics. But Aristotle, more a naturalist than a platonist, finally rejected the method of pairing the elements of two infinite collections (in the case at hand, points and instants) and introduced instead the distinction between actual and potential infinities. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Truth, objects, infinity: new perspectives on the philosophy of paul benacerraf | es_ES |
dc.relation.ispartofseries | ;vol. 28 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-319-45980-6_11 | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | rational number | es_ES |
dc.subject | universal constant | es_ES |
dc.subject | algebraic combination | es_ES |
dc.subject | planck time | es_ES |
dc.subject | actual infinity | es_ES |
dc.subject | WOS(2) | es_ES |
dc.subject | Scopus(2) | es_ES |
dc.title | Supertasks, Physics and the Axiom of Infinity | es_ES |
dc.type | bookPart | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1007/978-3-319-45980-6_11 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |