Mostrar el registro sencillo del ítem

dc.contributor.authorLeon-Sanchez, Antonio
dc.contributor.authorLeón-Mejía, Ana
dc.date2016
dc.date.accessioned2020-05-22T11:17:01Z
dc.date.available2020-05-22T11:17:01Z
dc.identifier.isbn978-3-319-45980-6
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10090
dc.description.abstractIt seems reasonable to assume that mathematical infinity was not the objective of Zeno’s dichotomy (in any of its variants); however, some kind of mathematical infinity was already at stake in his celebrated arguments. Aristotle proposed a solution to Zeno’s dichotomy by introducing what we now call one-to-one correspondences, the key instrument of modern infinitist mathematics. But Aristotle, more a naturalist than a platonist, finally rejected the method of pairing the elements of two infinite collections (in the case at hand, points and instants) and introduced instead the distinction between actual and potential infinities.es_ES
dc.language.isoenges_ES
dc.publisherTruth, objects, infinity: new perspectives on the philosophy of paul benacerrafes_ES
dc.relation.ispartofseries;vol. 28
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-319-45980-6_11es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectrational numberes_ES
dc.subjectuniversal constantes_ES
dc.subjectalgebraic combinationes_ES
dc.subjectplanck timees_ES
dc.subjectactual infinityes_ES
dc.subjectWOS(2)es_ES
dc.subjectScopus(2)es_ES
dc.titleSupertasks, Physics and the Axiom of Infinityes_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-319-45980-6_11


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem