Mostrar el registro sencillo del ítem

dc.contributor.authorYakoubsohn, J. C.
dc.contributor.authorGutierrez, J. M.
dc.contributor.authorMagreñán, Á. Alberto
dc.date2016
dc.date.accessioned2020-05-12T06:39:54Z
dc.date.available2020-05-12T06:39:54Z
dc.identifier.isbn9783319392288
dc.identifier.issn2199-3041
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10037
dc.description.abstractThis paper deals with the enlargement of the region of convergence of Newton's method for solving nonlinear equations defined in Banach spaces. We have used an homotopy method to obtain approximate zeros of the considered function. The novelty in our approach is the establishment of new convergence results based on a Lipschitz condition with a L-average for the involved operator. In particular, semilocal convergence results (Kantorovich-type results), as well as local convergence results (gamma-theory) are obtained.es_ES
dc.language.isoenges_ES
dc.publisherAdvances in iterative methods for nonlinear equationses_ES
dc.relation.ispartofseries;vol. 10
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-319-39228-8_7es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectconvergencees_ES
dc.subjectequationses_ES
dc.subjectnewtonses_ES
dc.subjectScopus(2)es_ES
dc.subjectWOS(2)es_ES
dc.titleComplexity of an Homotopy Method at the Neighbourhood of a Zeroes_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-319-39228-8_7


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem