• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Listar por tema 
    •   Inicio
    • Listar por tema
    •   Inicio
    • Listar por tema

    Listar por tema "granular computing"

    • 0-9
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    Ordenar por:

    Orden:

    Resultados:

    Mostrando ítems 1-3 de 3

    • título
    • fecha de publicación
    • fecha de envío
    • ascendente
    • descendente
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
      • Generating Recommendations in GDM with an Allocation of Information Granularity 

        Cabrerizo, Francisco Javier; Morente-Molinera, Juan Antonio ; Pérez, Ignacio Javier; Urena, Raquel; Herrera-Viedma, Enrique (Aggregation Functions in Theory and in Practice, 2018)
        A Group decision making process is carried out when human beings jointly make an election from a possible collection of alternatives. Here, a question of importance is to avoid winners and losers, in the sense that the ...
      • Improving Consensus in Group Decision Making with Intuitionistic Reciprocal Preference Relations: A Granular Computing Approach 

        Cabrerizo, Francisco Javier; Morente-Molinera, Juan Antonio ; Alonso, Sergio; Pedrycz, Witold; Herrera-Viedma, Enrique (2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018, 2018)
        Intuitionistic reciprocal preference relations constitute a flexible and simple representation of decision makers' preference on a set of alternative options, while at the same time allow to accommodate degrees of hesitation ...
      • Improving supervised learning classification methods using multi-granular linguistic modelling and fuzzy entropy 

        Morente-Molinera, Juan Antonio ; Mezei, Jozsef; Carlsson, Christer; Herrera-Viedma, Enrique (IEEE Transactions on Fuzzy Systems, 10/2017)
        Obtaining good classification results using supervised learning methods is critical if we want to obtain a high level of precision in the classification processes. The training data used for the learning process plays a ...

        Mi cuenta

        AccederRegistrar

        ¿necesitas ayuda?

        Manual de UsuarioContacto: reunir@unir.net

        Listar

        todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






        Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
        © UNIR - Universidad Internacional de La Rioja
         
        Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
        © UNIR - Universidad Internacional de La Rioja