Mostrar el registro sencillo del ítem

dc.contributor.authorSalmerón, José L.
dc.contributor.authorCorreia, Marisol B.
dc.contributor.authorPalos-Sánchez, Pedro R
dc.date2019-06-10
dc.date.accessioned2019-08-27T09:34:26Z
dc.date.available2019-08-27T09:34:26Z
dc.identifier.issn10762787
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9052
dc.description.abstract1. Introduction Te challenge of this special issue has been to know the state of the problem related to forecasting modeling and the creation of a model to forecast the future behavior that supports decision making by supporting real-world applications. Tis issue has been highlighted by the quality of its research work on the critical importance of advanced analytical methods, such as neural networks, sof computing, evolutionary algorithms, chaotic models, cellular automata, agent-based models, and fnite mixture minimum squares (FIMIX-PLS)es_ES
dc.language.isoenges_ES
dc.publisherComplexityes_ES
dc.relation.ispartofseries;vol. 2019
dc.relation.urihttps://www.hindawi.com/journals/complexity/2019/8160659/es_ES
dc.rightsopenAccesses_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleComplexity in Forecasting and Predictive Modelses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1155/2019/8160659


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem