Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorOrcos, Lara
dc.contributor.authorSarría, Íñigo
dc.contributor.authorSicilia, Juan Antonio
dc.date2019-05
dc.date.accessioned2019-06-14T07:09:16Z
dc.date.available2019-06-14T07:09:16Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/8430
dc.description.abstractWe first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used hypotheses on the fourth Frechet-derivative of the operator involved. We use hypotheses only on the first Frechet-derivative in one local convergence analysis. This way, the applicability of these methods is extended. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study based on Lipschitz constants. Numerical examples illustrating the theoretical results are also presented in this study.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 57, nº 5
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs10910-018-0950-1es_ES
dc.rightsopenAccesses_ES
dc.subjectNewton's methodes_ES
dc.subjectbanach spacees_ES
dc.subjectfrechet derivativees_ES
dc.subjectdifferent methods for solving STEM problemses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleDifferent methods for solving STEM problemses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-018-0950-1


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem