Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Hernández, Fernando
dc.contributor.authorVerdú, Elena
dc.contributor.authorRainer, J Javier
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2019
dc.date.accessioned2019-05-30T09:00:56Z
dc.date.available2019-05-30T09:00:56Z
dc.identifier.issn1875-919X
dc.identifier.urihttps://reunir.unir.net/handle/123456789/8343
dc.description.abstractThis paper addresses the problem of automatically customizing the sending of notifications in a nondisturbing way, that is, by using only implicit-feedback. Then, we build a hybrid filter that combines text mining content filtering and collaborative filtering to predict the notifications that are most interesting for each user. The content-based filter clusters notifications to find content with topics for which the user has shown interest. The collaborative filter increases diversity by discovering new topics of interest for the user, because these are of interest to other users with similar concerns. The paper reports the result of measuring the performance of this recommender and includes a validation of the topics-based approach used for content selection. Finally, we demonstrate how the recommender uses implicit-feedback to personalize the content to be delivered to each user.es_ES
dc.language.isoenges_ES
dc.publisherScientific Programminges_ES
dc.relation.urihttps://www.hindawi.com/journals/sp/2019/1293194/es_ES
dc.rightsopenAccesses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA Nondisturbing Service to Automatically Customize Notification Sending Using Implicit-Feedbackes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1155/2019/1293194


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem