Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorGiménez de Ory, Elena (1)
dc.contributor.authorMagreñán, Á. Alberto (1)
dc.date2017
dc.date.accessioned2018-03-07T16:14:33Z
dc.date.available2018-03-07T16:14:33Z
dc.identifier.issn0259-9791
dc.identifier.urihttps://reunir.unir.net/handle/123456789/6325
dc.description.abstractWe present a new semilocal convergence analysis for Secant methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes the computation of the bounds on the limit points of the majorizing sequences involved. Under the same computational cost on the parameters involved our convergence criteria are weaker and the error bounds more precise than in earlier studies. A numerical example is also presented to illustrate the theoretical results obtained in this study.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.urihttps://link.springer.com/article/10.1007/s10910-017-0823-zes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectsecant methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectlocal convergencees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleImproved semilocal convergence analysis in Banach space with applications to chemistryes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-017-0823-z


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem