Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2014-06
dc.date.accessioned2018-01-17T16:01:34Z
dc.date.available2018-01-17T16:01:34Z
dc.identifier.issn1359-8678
dc.identifier.urihttps://reunir.unir.net/handle/123456789/6214
dc.description.abstractWe present a unified local and semilocal convergence analysis for secant-type methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes the computation of the bounds on the limit points of the majorizing sequences involved. Under the same computational cost, using both Lipschtiz and center Lipschitz conditions, our convergence criteria can be: weaker; the error bounds more precise and the convergence balls larger than in earlier studies. Special cases such us Newton's method or Secant method are also presented. Numerical examples, including a Chandrasekhar equation and a boundary value problem, are also presented to illustrate the theoretical results obtained in this study.es_ES
dc.language.isoenges_ES
dc.publisherNonlinear Studieses_ES
dc.relation.ispartofseries;vol. 21, nº 3
dc.relation.urihttp://web.b.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=147d7f67-306e-4373-be12-ec8d8c7ef9df%40sessionmgr120es_ES
dc.rightsopenAccesses_ES
dc.subjectbanach spacees_ES
dc.subjectdivided differencees_ES
dc.subjectlocal convergencees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectsecant-type methodes_ES
dc.subjectsemilocal convergencees_ES
dc.subjectScopuses_ES
dc.titleRelaxed secant-type methodses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem