Nuevo método numérico de resolución de ecuaciones elípticas en derivadas parciales
Autor:
Moysi-Amieva, Alejandro
Fecha:
21/09/2017Palabra clave:
Tipo de Ítem:
masterThesisResumen:
El presente Trabajo Fin de Master plantea un método numérico para solucionar ecuaciones elípticas en derivadas parciales. Si bien ya existen métodos para resolver dichas ecuaciones, con este método se pretende simplificar el planteamiento y resolución de las mismas, así como facilitar la implementación de cambios o variaciones en los problemas desde el punto de vista de la programación en leguaje matemático que se tiene que implementar, pudiendo suponer una mejora relevante en el lado hombre de la interfase hombre-máquina.
Al igual que el método clásico de resolución de ecuaciones elípticas, se trata de un método basado en la transformación por diferencias finitas pero la diferente gestión de los términos generados hace que se genere un método con importantes diferencias respecto al clásico.
Descripción:
The aim of the present Master’s dissertation is to set out an approach for solving elliptical partial differential equations (PDEs.). Multiple forms of simplifying the approach and resolution of them exist,but there is a need to improve the simplicity of changes or variations in the problems from the point of view of programming in mathematical language that has to be implemented, which may represent a relevant enhancement in the man-machine interface.
As with elliptic equations classical resolution method, it is a method based on transformation by finite differences, but the different management of the terms generated method with important differences with the classic one.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
2025 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
277 |
235 |
219 |
179 |
128 |
104 |
132 |
5 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
246 |
231 |
330 |
196 |
92 |
105 |
89 |
1 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Study of local convergence and dynamics of a king-like two-step method with applications
Argyros, Ioannis K; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo ; Sicilia, Juan Antonio (Mathematics, 01/07/2020)In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because ... -
Convergence and Dynamics of a Higher-Order Method
Moysi, Alejandro; Argyros, Ioannis K; Regmi, Samundra; González, Daniel; Magreñán, Á. Alberto; Sicilia, Juan Antonio (Symmetry, 03/2020)Solving problems in various disciplines such as biology, chemistry, economics, medicine, physics, and engineering, to mention a few, reduces to solving an equation. Its solution is one of the greatest challenges. It involves ... -
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...