Mostrar el registro sencillo del ítem

dc.contributor.authorGaldames Bravo, Orlando (1)
dc.date2015-07
dc.date.accessioned2017-10-08T07:15:05Z
dc.date.available2017-10-08T07:15:05Z
dc.identifier.issn1660-5454
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5679
dc.description.abstractIn the present paper we give some necessary conditions that satisfy the solutions of an infinite system of ordinary differential equations. We investigate the behavior of the solutions of a general system of equations, regarding the norm of a Banach function space based on a vector measure. To this aim we construct a vector measure by an standard procedure. Assuming that the solution of each individual equation of the system belongs to a Banach function space based on scalar measures we deduce, with natural conditions, that a solution of such system belongs to a Banach function space based on a vector measure. We also give an example of a system of non-linear Bernoulli equations and show the relation with an equation involving the integral operator.es_ES
dc.language.isoenges_ES
dc.publisherMediterranean Journal of Mathematicses_ES
dc.relation.ispartofseries;vol. 12, nº 3
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs00009-014-0445-7es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectbanach function spacees_ES
dc.subjectvector measurees_ES
dc.subjectsystem of differential equationses_ES
dc.subjectintegral equationes_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleOn the Norm with Respect to Vector Measures of the Solution of an Infinite System of Ordinary Differential Equationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1007/s00009-014-0445-7


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem