Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.date2015-06
dc.date.accessioned2017-10-08T07:10:45Z
dc.date.available2017-10-08T07:10:45Z
dc.identifier.issn1873-5649
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5678
dc.description.abstractWe present a new convergence analysis, for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence analysis leads to more precise error bounds and to a better information on the location of the solution than the corresponding ones in earlier studies such as [2,6,9,11,14,15,17,20,22-26]. Numerical examples validating the theoretical results are also provided in this study. (C) 2015 Elsevier Inc. All rights reserved.es_ES
dc.language.isoenges_ES
dc.publisherApplied Mathematics and Computationes_ES
dc.relation.ispartofseries;vol. 262
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0096300315004774?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectsecant methodes_ES
dc.subjectBartsch spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectFrechet derivativees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleNew semilocal and local convergence analysis for the Secant methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1016/j.amc.2015.04.026


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem