Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.date2015-05
dc.date.accessioned2017-10-07T11:38:48Z
dc.date.available2017-10-07T11:38:48Z
dc.identifier.issn1015-8634
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5673
dc.description.abstractWe present new sufficient convergence criteria for the convergence of the secant-method to a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence criteria can always be weaker than the corresponding ones in earlier studies. Numerical examples are also provided in this study to solve equations in cases not possible before.es_ES
dc.language.isoenges_ES
dc.publisherBulletin of the Korean Mathematical Societyes_ES
dc.relation.ispartofseries;vol. 52, nº 3
dc.relation.urihttp://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1BMAX_2015_v52n3_865es_ES
dc.rightsopenAccesses_ES
dc.subjectsecant methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectFrechet derivativees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExpanding the aplicability of secant method with applicationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.4134/BKMS.2015.52.3.865


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem