Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2014-11
dc.date.accessioned2017-10-02T16:15:57Z
dc.date.available2017-10-02T16:15:57Z
dc.identifier.issn2234-3008
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5614
dc.description.abstractWe present a unified local and semilocal convergence analysis for secant-type methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes he computation of the bounds on the limit points of the majorizing sequences involved. Under the same computational cost our semilocal convergence criteria can be weaker; the error bounds more precise and in the local case the convergence balls can be larger and the error bounds tighter than in earlier studies such as [1-3,7-14,16,20,21] at least for the cases of Newton's method and the secant method. Numerical examples are also presented to illustrate the theoretical results obtained in this study.es_ES
dc.language.isoenges_ES
dc.publisherJournal of the Korean Mathematical Societyes_ES
dc.relation.ispartofseries;vol. 51, nº 6
dc.relation.urihttp://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DBSHBB_2014_v51n6_1155es_ES
dc.rightsopenAccesses_ES
dc.subjectsecant-type methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectlocal convergencees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA unified convergence analysis for secant-type methodses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.4134/JKMS.2014.51.6.1155


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem