Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2014-08
dc.date.accessioned2017-09-28T20:55:42Z
dc.date.available2017-09-28T20:55:42Z
dc.identifier.issn1873-5649
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5607
dc.description.abstractWe present a local convergence analysis of the proximal Gauss-Newton method for solving penalized nonlinear least squares problems in a Hilbert space setting. Using more precise majorant conditions than in earlier studies such as (Allende and Goncalves) [1], (Ferreira et al., 2011) [9] and a combination of a majorant and a center majorant function, we provide: a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost as in earlier studies using only the majorant function. (C) 2014 Elsevier Inc. All rights reserved.es_ES
dc.language.isoenges_ES
dc.publisherApplied Mathematics and Computationes_ES
dc.relation.ispartofseries;vol. 241
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0096300314006274?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectleast squares problemses_ES
dc.subjectProximal Newton-Gauss methodses_ES
dc.subjectHilbert spacees_ES
dc.subjectMajorant functiones_ES
dc.subjectcenter majorant functiones_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleLocal convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problemses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1016/j.amc.2014.04.087


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem