Mostrar el registro sencillo del ítem
Wavelets for the Maxwell's equations: An overview
dc.contributor.author | Amat, Sergio | |
dc.contributor.author | Blázquez Tobias, Pedro J. | |
dc.contributor.author | Busquier, Sonia | |
dc.contributor.author | Bermúdez, Concepción | |
dc.date | 2017-09 | |
dc.date.accessioned | 2017-09-01T08:45:20Z | |
dc.date.available | 2017-09-01T08:45:20Z | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.issn | 1879-1778 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/5514 | |
dc.description.abstract | In recent years wavelets decompositions have been widely used in computational Maxwell’s curl equations, to effectively resolve complex problems. In this paper, we review different types of wavelets that we can consider, the Cohen–Daubechies–Feauveau biorthogonal wavelets, the orthogonal Daubechies wavelets and the Deslauries–Dubuc interpolating wavelets. We summarize the main features of these frameworks and we propose some possible future works. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Journal of Computational and Applied Mathematics | es_ES |
dc.relation.ispartofseries | ;vol. 321 | |
dc.relation.uri | http://www.sciencedirect.com/science/article/pii/S0377042717300730?via%3Dihub | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | wavelets | es_ES |
dc.subject | multiresolution | es_ES |
dc.subject | stability | es_ES |
dc.subject | adaptivity | es_ES |
dc.subject | Maxwell’s equations | es_ES |
dc.subject | JCR | es_ES |
dc.subject | Scopus | es_ES |
dc.title | Wavelets for the Maxwell's equations: An overview | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | http://dx.doi.org/10.1016/j.cam.2017.02.015 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |