Mostrar el registro sencillo del ítem

dc.contributor.authorAmat, Sergio
dc.contributor.authorBlázquez Tobias, Pedro J.
dc.contributor.authorBusquier, Sonia
dc.contributor.authorBermúdez, Concepción
dc.date2017-09
dc.date.accessioned2017-09-01T08:45:20Z
dc.date.available2017-09-01T08:45:20Z
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5514
dc.description.abstractIn recent years wavelets decompositions have been widely used in computational Maxwell’s curl equations, to effectively resolve complex problems. In this paper, we review different types of wavelets that we can consider, the Cohen–Daubechies–Feauveau biorthogonal wavelets, the orthogonal Daubechies wavelets and the Deslauries–Dubuc interpolating wavelets. We summarize the main features of these frameworks and we propose some possible future works.es_ES
dc.language.isospaes_ES
dc.publisherJournal of Computational and Applied Mathematicses_ES
dc.relation.ispartofseries;vol. 321
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0377042717300730?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectwaveletses_ES
dc.subjectmultiresolutiones_ES
dc.subjectstabilityes_ES
dc.subjectadaptivityes_ES
dc.subjectMaxwell’s equationses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleWavelets for the Maxwell's equations: An overviewes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1016/j.cam.2017.02.015


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem