Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Díaz, Vicente
dc.contributor.authorPascual-Espada, Jordán
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorPelayo García-Bustelo, B. Cristina
dc.contributor.authorCueva Lovelle, Juan Manuel
dc.date2017-05
dc.date.accessioned2017-08-09T14:19:37Z
dc.date.available2017-08-09T14:19:37Z
dc.identifier.issn1872-9681
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5380
dc.description.abstractSocial networks link people and machines, providing a huge amount of information that grows very fast without the possibility to be handled manually. Moreover, opinion mining is the process of using natural language processing, text analytics and computational linguistics to identify and extract subjective information in different sources such as social networks. To that, classification methods are used but due to the limitless number of topics and the breadth and ambiguity of natural language, with its peculiarities in social networks, the results can be greatly improved. In this work, we present DSociaL, a platform to automate the processing of information obtained from social networks, focusing on improving the accuracy of decision support systems for sentiment analysis. We focus on machine learning-based simple probabilistic classifiers, evaluating a naive Bayes classifier, the basis of one of the most used soft computing techniques. Thus, we show a use case in which the proposal, with definitions and refinements made by experts, helps to improve the prediction of users’ feelings towards a movie compared to what would happen with a conventional approach.es_ES
dc.language.isoenges_ES
dc.publisherApplied Soft Computinges_ES
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S1568494617303010es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectsentiment analysises_ES
dc.subjectclassifieres_ES
dc.subjectbayesian networkes_ES
dc.subjectsoft computinges_ES
dc.subjectdomain-specific languagees_ES
dc.subjectmachine learninges_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleAn approach to improve the accuracy of probabilistic classifiers for decision support systems in sentiment analysises_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.asoc.2017.05.038


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem