Mostrar el registro sencillo del ítem
Third-degree anomalies of Traub's method
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Cordero, Alicia | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.contributor.author | Torregrosa, Juan Ramón | |
dc.date | 2017-01 | |
dc.date.accessioned | 2017-08-07T15:43:25Z | |
dc.date.available | 2017-08-07T15:43:25Z | |
dc.identifier.issn | 1879-1778 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/5338 | |
dc.description.abstract | Traub’s method is a tough competitor of Newton’s scheme for solving nonlinear equations as well as nonlinear systems. Due to its third-order convergence and its low computational cost, it is a good procedure to be applied on complicated multidimensional problems. In order to better understand its behavior, the stability of the method is analyzed on cubic polynomials, showing the existence of very small regions with unstable behavior. Finally, the performance of the method on cubic matrix equations arising in control theory is presented, showing a good performance. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Journal of Computational and Applied Mathematics | es_ES |
dc.relation.ispartofseries | ;vol. 309 | |
dc.relation.uri | http://www.sciencedirect.com/science/article/pii/S0377042716300425?via%3Dihub | es_ES |
dc.rights | closedAccess | es_ES |
dc.subject | nonlinear equations | es_ES |
dc.subject | traub’s iterative method | es_ES |
dc.subject | basin of attraction | es_ES |
dc.subject | parameter plane | es_ES |
dc.subject | stability | es_ES |
dc.subject | matrix equations | es_ES |
dc.subject | JCR | es_ES |
dc.subject | Scopus | es_ES |
dc.title | Third-degree anomalies of Traub's method | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1016/j.cam.2016.01.060 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |