Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorCordero, Alicia
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorTorregrosa, Juan Ramón
dc.date2017-01
dc.date.accessioned2017-08-07T15:43:25Z
dc.date.available2017-08-07T15:43:25Z
dc.identifier.issn1879-1778
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5338
dc.description.abstractTraub’s method is a tough competitor of Newton’s scheme for solving nonlinear equations as well as nonlinear systems. Due to its third-order convergence and its low computational cost, it is a good procedure to be applied on complicated multidimensional problems. In order to better understand its behavior, the stability of the method is analyzed on cubic polynomials, showing the existence of very small regions with unstable behavior. Finally, the performance of the method on cubic matrix equations arising in control theory is presented, showing a good performance.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Computational and Applied Mathematicses_ES
dc.relation.ispartofseries;vol. 309
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0377042716300425?via%3Dihubes_ES
dc.rightsclosedAccesses_ES
dc.subjectnonlinear equationses_ES
dc.subjecttraub’s iterative methodes_ES
dc.subjectbasin of attractiones_ES
dc.subjectparameter planees_ES
dc.subjectstabilityes_ES
dc.subjectmatrix equationses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleThird-degree anomalies of Traub's methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.cam.2016.01.060


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem