Mostrar el registro sencillo del ítem
Extending the convergence domain of Newton's method for twice Frechet differentiable operators
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.date | 2016-03 | |
dc.date.accessioned | 2017-08-07T15:14:29Z | |
dc.date.available | 2017-08-07T15:14:29Z | |
dc.identifier.issn | 1793-6861 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/5335 | |
dc.description.abstract | We present a semi-local convergence analysis of Newton's method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Using center-Lipschitz condition on the first and the second Frechet derivatives, we provide under the same computational cost a new and more precise convergence analysis than in earlier studies by Huang [A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211-217] and Gutierrez [A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79 (1997) 131-145]. Numerical examples where the old convergence criteria cannot apply to solve nonlinear equations but the new convergence criteria are satisfied are also presented at the concluding section of this paper. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Analysis and Applications | es_ES |
dc.relation.ispartofseries | ;vol. 14, nº 2 | |
dc.relation.uri | http://www.worldscientific.com/doi/abs/10.1142/S0219530515500013 | es_ES |
dc.rights | closedAccess | es_ES |
dc.subject | fixed point | es_ES |
dc.subject | Newton’s method | es_ES |
dc.subject | banach space | es_ES |
dc.subject | semilocal convergence | es_ES |
dc.subject | Lipschitz/center-Lipschitz condition | es_ES |
dc.subject | Frechet derivative | es_ES |
dc.subject | JCR | es_ES |
dc.subject | Scopus | es_ES |
dc.title | Extending the convergence domain of Newton's method for twice Frechet differentiable operators | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1142/S0219530515500013 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |