Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto (1)
dc.date2016-03
dc.date.accessioned2017-08-07T15:14:29Z
dc.date.available2017-08-07T15:14:29Z
dc.identifier.issn1793-6861
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5335
dc.description.abstractWe present a semi-local convergence analysis of Newton's method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Using center-Lipschitz condition on the first and the second Frechet derivatives, we provide under the same computational cost a new and more precise convergence analysis than in earlier studies by Huang [A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211-217] and Gutierrez [A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79 (1997) 131-145]. Numerical examples where the old convergence criteria cannot apply to solve nonlinear equations but the new convergence criteria are satisfied are also presented at the concluding section of this paper.es_ES
dc.language.isoenges_ES
dc.publisherAnalysis and Applicationses_ES
dc.relation.ispartofseries;vol. 14, nº 2
dc.relation.urihttp://www.worldscientific.com/doi/abs/10.1142/S0219530515500013es_ES
dc.rightsclosedAccesses_ES
dc.subjectfixed pointes_ES
dc.subjectNewton’s methodes_ES
dc.subjectbanach spacees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectLipschitz/center-Lipschitz conditiones_ES
dc.subjectFrechet derivativees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExtending the convergence domain of Newton's method for twice Frechet differentiable operatorses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1142/S0219530515500013


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem