Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.date2016-04
dc.date.accessioned2017-08-07T14:58:05Z
dc.date.available2017-08-07T14:58:05Z
dc.identifier.issn1572-9265
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5333
dc.description.abstractWe present a new semilocal convergence analysis for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Applications are also given in this study to show that our estimates on the distances involved are tighter than the older ones.es_ES
dc.language.isoenges_ES
dc.publisherNumerical Algorithmses_ES
dc.relation.ispartofseries;vol. 71, nº 4
dc.relation.urihttps://link.springer.com/article/10.1007/s11075-015-0025-3es_ES
dc.rightsclosedAccesses_ES
dc.subjectsecant-type methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectlocal convergencees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectJCRes_ES
dc.titleImproved convergence analysis for Newton-like methodses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s11075-015-0025-3


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem