Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2016-01
dc.date.accessioned2017-04-12T15:25:00Z
dc.date.available2017-04-12T15:25:00Z
dc.identifier.citationArgyros, I K & Magreñán, A A (2015). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms. Retrieved 6 September, 2015, from http://dx.doi.org/10.1007/s11075-015-9981-xes_ES
dc.identifier.issn1017-1398
dc.identifier.issn1572-9265
dc.identifier.urihttps://reunir.unir.net/handle/123456789/4754
dc.description.abstractWe study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey (Chem. Eng. Sci 32, 257–264, 1977), Candela and Marquina (Computing 44, 169–184, 1990), (Computing 45(4):355–367, 1990), Chicharro et al. (2013), Chun (Appl. Math. Comput, 190(2):1432–1437, 1990), Cordero et al. (Appl.Math. Lett. 26, 842–848, 2013), Cordero et al. (Appl. Math. Comput. 219, 8568–8583, 2013), Cordero and Torregrosa (Appl. Math. Comput. 190, 686–698, 2007), Ezquerro and Hernández (Appl. Math. Optim. 41(2):227–236, 2000), (BIT Numer. Math. 49, 325–342, 2009), (J. Math. Anal. Appl. 303, 591–601, 2005), Gutiérrez and Hernández (Comput. Math. Applic. 36(7):1–8, 1998), Ganesh and Joshi (IMA J. Numer. Anal. 11, 21–31, 1991), Hernández (Comput. Math. Applic. 41(3–4):433–455, 2001), Hernández and Salanova (Southwest J. Pure Appl. Math. 1, 29–40, 1999), Jarratt (Math. Comput. 20(95):434–437, 1996), Kou and Li (Appl. Math. Comput. 189, 1816–1821, 2007), Li (Appl. Math. Comput. 235, 221–225, 2014), Ren et al. (Numer. Algorithm. 52(4):585–603, 2009), Wang et al. (Numer. Algorithm. 57, 441–456, 2011), Kou et al. (Numer. Algorithm. 60, 369–390, 2012) show convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analyses of these methods are also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.es_ES
dc.language.isoenges_ES
dc.publisherNumerical Algorithmses_ES
dc.relation.ispartofseries;vol. 71, nº 1
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs11075-015-9981-x
dc.rightsrestrictedAccesses_ES
dc.subjectchebyshev–Halley–type methodses_ES
dc.subjectlocal convergencees_ES
dc.subjectorder of convergencees_ES
dc.subjectdynamicses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivativees_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1007/s11075-015-9981-x


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem