Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorOrcos, Lara
dc.date2016-08
dc.date.accessioned2017-04-10T16:03:12Z
dc.date.available2017-04-10T16:03:12Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/4720
dc.description.abstractWe present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64–72, 1933) and Zafer et al. (Sci World J, 2015. doi:10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 54, nº 7
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs10910-016-0605-z
dc.rightsrestrictedAccesses_ES
dc.subjectfourth order methodes_ES
dc.subjectrational interpolationes_ES
dc.subjectlocal convergencees_ES
dc.subjectdivided differencees_ES
dc.subjectdynamicses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleLocal convergence and a chemical application of derivative free root finding methods with one parameter based on interpolationes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1007/s10910-016-0605-z


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem