• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-9 de 9

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Inexact Newton Methods on Riemannian Manifolds 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Advances in iterative methods for nonlinear equations, 2016)
    In this chapter we study of the Inexact Newton Method in order to solve problems on a Riemannian Manifold. We present standard notation and previous results on Riemannian manifolds. A local convergence study is presented ...

    Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Orcos, Lara (Journal of Mathematical Chemistry, 2016-08)
    We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the ...

    Local Convergence and the Dynamics of a Two-Step Newton-Like Method 

    Argyros, Ioannis K; Magreñán, Á. Alberto (International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016-05)
    We present the local convergence analysis and the study of the dynamics of a two-step Newton-like method in order to approximate a locally unique solution of multiplicity one of a nonlinear equation.

    On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Journal of Computational and Applied Mathematics, 2016-05)
    We study the local convergence of Chebyshev–Halley methods with six and eight order of convergence to approximate a locally unique solution of a nonlinear equation. In Sharma (2015) (see Theorem 1, p. 121) the convergence ...

    Improved convergence analysis for Newton-like methods 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Numerical Algorithms, 2016-04)
    We present a new semilocal convergence analysis for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in ...

    New improved convergence analysis for the secant method 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Mathematics and Computers in Simulation, 2016-01)
    We present a new convergence analysis, for the secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz ...

    Extending the convergence domain of Newton's method for twice Frechet differentiable operators 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Analysis and Applications, 2016-03)
    We present a semi-local convergence analysis of Newton's method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Using center-Lipschitz condition on the first and the ...

    A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Numerical Algorithms, 2016-01)
    We study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey ...

    Iterative algorithms II 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Nova Science Publishers, 2016-01)
    The study of iterative methods began several years ago in order to find the solutions of problems where mathematicians cannot find a solution in closed form. In this way, different studies related to different methods with ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Argyros, Ioannis K (9)
    Magreñán, Á. Alberto (9)
    Orcos, Lara (1)Palabra claveJCR (7)Scopus (6)local convergence (5)banach space (3)divided difference (3)... ver todoFecha
    2016 (9)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja