• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    An Effective Prediction Approach for the Management of Children Victims of Road Accidents

    Autor: 
    Saadi, F.
    ;
    Baghdad, Atmani
    ;
    Henni, F.
    ;
    Benfriha, H.
    ;
    Addou, Z.
    ;
    Guerbouz, R.
    Fecha: 
    02/2024
    Palabra clave: 
    case based reasoning; data mining; decision tree; medical decision making approach; predictive model; road accident; selection of relevant attributes; traumatic brain injuries; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    F. Saadi, B. Atmani, F. Henni, H.Benfriha, Z.Addou, R. Guerbouz. An Effective Prediction Approach for the Management of Children Victims of Road Accidents, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.02.001
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/16224
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.02.001
    Open Access
    Resumen:
    Road traffic generates a considerable number of accidents each year. The management of injuries caused by these accidents is becoming a real public health problem. Faced with this latter, we propose a new clinical decision making approach based on case-based reasoning (CBR) and data mining (DM) techniques to speed up and improve the care of an injured child. The main idea is to preprocess the dataset before using K Nearest Neighbor (KNN) Classification Model. In this paper, an efficient predictive model is developed to predict the admission procedure of a child victim of a traffic accident in pediatric intensive care units. The evaluation of the proposed model is conducted on a real dataset elaborated by the authors and validated by statistical analysis. This novel model executes a selection of relevant attributes using data mining technique and integrates a CBR system to retrieve similar cases from an archive of cases of patients successfully treated with the proposed treatment plan. The results revealed that the proposed approach outperformed other models and the results of previous studies by achieving an accuracy of 91.66%.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: An Effective Prediction Approach for the Management of Children Victims of Road Accidents.pdf
    Tamaño: 1.123Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    153
    61
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    166
    73

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Combining Fuzzy AHP with GIS and Decision Rules for Industrial Site Selection 

      Taibi, Aissa; Atmani, Baghdad (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      This study combines Fuzzy Analytic Hierarchy Process (FAHP), Geographic Information System (GIS) and Decision rules to provide decision makers with a ranking model for industrial sites in Algeria. A ranking of the suitable ...
    • Contribution to the Association Rules Visualization for Decision Support: A Combined Use Between Boolean Modeling and the Colored 2D Matrix 

      Atmani, Baghdad; Benhacine, Fatima Zohra; Abdelouhab, Fawzia Zohra (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      In the present paper we aim to study the visual decision support based on Cellular machine CASI (Cellular Automata for Symbolic Induction). The purpose is to improve the visualization of large sets of association rules, ...
    • Diabetes Diagnosis by Case-Based Reasoning and Fuzzy Logic 

      Atmani, Baghdad; Benamina, Mohammed; Benbelkacem, Sofia (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2018)
      In the medical field, experts’ knowledge is based on experience, theoretical knowledge and rules. Case-based reasoning is a problem-solving paradigm which is based on past experiences. For this purpose, a large number of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja