• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 3, december 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 3, december 2018
    • Ver ítem

    Diabetes Diagnosis by Case-Based Reasoning and Fuzzy Logic

    Autor: 
    Atmani, Baghdad
    ;
    Benamina, Mohammed
    ;
    Benbelkacem, Sofia
    Fecha: 
    12/2018
    Palabra clave: 
    data mining; case-based reasoning; classification; case retrieval; diabetes application; fuzzy decision tree; fuzzy rule base; rule induction; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12399
    DOI: 
    http://doi.org/10.9781/ijimai.2018.02.001
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2651
    Open Access
    Resumen:
    In the medical field, experts’ knowledge is based on experience, theoretical knowledge and rules. Case-based reasoning is a problem-solving paradigm which is based on past experiences. For this purpose, a large number of decision support applications based on CBR have been developed. Cases retrieval is often considered as the most important step of case-based reasoning. In this article, we integrate fuzzy logic and data mining to improve the response time and the accuracy of the retrieval of similar cases. The proposed Fuzzy CBR is composed of two complementary parts; the part of classification by fuzzy decision tree realized by Fispro and the part of case-based reasoning realized by the platform JColibri. The use of fuzzy logic aims to reduce the complexity of calculating the degree of similarity that can exist between diabetic patients who require different monitoring plans. The results of the proposed approach are compared with earlier methods using accuracy as metrics. The experimental results indicate that the fuzzy decision tree is very effective in improving the accuracy for diabetes classification and hence improving the retrieval step of CBR reasoning.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_3_8_pdf_20127.pdf
    Tamaño: 1.309Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 3, december 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    46
    45
    98
    49
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    44
    27
    30
    10

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Combining Fuzzy AHP with GIS and Decision Rules for Industrial Site Selection 

      Taibi, Aissa; Atmani, Baghdad (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      This study combines Fuzzy Analytic Hierarchy Process (FAHP), Geographic Information System (GIS) and Decision rules to provide decision makers with a ranking model for industrial sites in Algeria. A ranking of the suitable ...
    • Contribution to the Association Rules Visualization for Decision Support: A Combined Use Between Boolean Modeling and the Colored 2D Matrix 

      Atmani, Baghdad; Benhacine, Fatima Zohra; Abdelouhab, Fawzia Zohra (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      In the present paper we aim to study the visual decision support based on Cellular machine CASI (Cellular Automata for Symbolic Induction). The purpose is to improve the visualization of large sets of association rules, ...
    • Improving Retrieval Performance of Case Based Reasoning Systems by Fuzzy Clustering 

      Saadi, F.; Atmani, Baghdad; Henni, F. (International Journal of Interactive Multimedia and Artificial Intelligence, 07/2023)
      Case-based reasoning (CBR), which is a classical reasoning methodology, has been put to use. Its application has allowed significant progress in resolving problems related to the diagnosis, therapy, and prediction of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja