Mostrar el registro sencillo del ítem
Equivalent quantum systems
dc.contributor.author | Caruso, M. | |
dc.date | 2023 | |
dc.date.accessioned | 2024-02-22T16:16:44Z | |
dc.date.available | 2024-02-22T16:16:44Z | |
dc.identifier.issn | 0219-8878 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/16136 | |
dc.description.abstract | We have studied quantum systems on finite-dimensional Hilbert spaces and found that all these systems are connected through local transformations. Actually, we have shown that these transformations give rise to a gauge group that connects the Hamiltonian operators associated with each quantum system. This bridge allows us to connect different quantum systems, in such a way that studying one of them allows to understand the other through a gauge transformation. Furthermore, we included the case where the Hamiltonian operator can be time-dependent. An application for this construction will be achieved in the theory of control quantum systems. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | International Journal of Geometric Methods in Modern Physics | es_ES |
dc.relation.ispartofseries | ;vol. 20, nº 12 | |
dc.relation.uri | https://www.worldscientific.com/doi/pdf/10.1142/S0219887823502092?download=true | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | adiabatic theorem | es_ES |
dc.subject | berry phase | es_ES |
dc.subject | equivalence relation | es_ES |
dc.subject | quantum control | es_ES |
dc.subject | Quantum systems | es_ES |
dc.subject | Scopus | es_ES |
dc.subject | JCR | es_ES |
dc.title | Equivalent quantum systems | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1142/S0219887823502092 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |