Mostrar el registro sencillo del ítem

dc.contributor.authorCaruso, M.
dc.date2023
dc.date.accessioned2024-02-22T16:16:44Z
dc.date.available2024-02-22T16:16:44Z
dc.identifier.issn0219-8878
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16136
dc.description.abstractWe have studied quantum systems on finite-dimensional Hilbert spaces and found that all these systems are connected through local transformations. Actually, we have shown that these transformations give rise to a gauge group that connects the Hamiltonian operators associated with each quantum system. This bridge allows us to connect different quantum systems, in such a way that studying one of them allows to understand the other through a gauge transformation. Furthermore, we included the case where the Hamiltonian operator can be time-dependent. An application for this construction will be achieved in the theory of control quantum systems.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Geometric Methods in Modern Physicses_ES
dc.relation.ispartofseries;vol. 20, nº 12
dc.relation.urihttps://www.worldscientific.com/doi/pdf/10.1142/S0219887823502092?download=truees_ES
dc.rightsrestrictedAccesses_ES
dc.subjectadiabatic theoremes_ES
dc.subjectberry phasees_ES
dc.subjectequivalence relationes_ES
dc.subjectquantum controles_ES
dc.subjectQuantum systemses_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleEquivalent quantum systemses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1142/S0219887823502092


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem