Mostrar el registro sencillo del ítem
Innovative Biosensing Approaches for Swift Identification of Candida Species, Intrusive Pathogenic Organisms
dc.contributor.author | Lorenzo-Villegas, Dionisio Lorenzo | |
dc.contributor.author | Gohil, Namra Vinay | |
dc.contributor.author | Lamo-Anuarbe, Paula | |
dc.contributor.author | Gurajala, Swathi Swathi | |
dc.contributor.author | Bagiu, Iulia Cristina | |
dc.contributor.author | Vulcanescu, Dan Dumitru | |
dc.contributor.author | Horhat, Florin George | |
dc.contributor.author | Sorop, Virgiliu Bogdan | |
dc.contributor.author | Diaconu, Mircea | |
dc.contributor.author | Sorop, Madalina Ioana | |
dc.contributor.author | Oprisoni, Andrada | |
dc.contributor.author | Horhat, Razvan Mihai | |
dc.contributor.author | Susan, Monica | |
dc.contributor.author | Mohanasundaram, Arunsundar | |
dc.date | 2023 | |
dc.date.accessioned | 2023-12-17T16:36:03Z | |
dc.date.available | 2023-12-17T16:36:03Z | |
dc.identifier.citation | Lorenzo-Villegas, D.L.; Gohil, N.V.; Lamo, P.; Gurajala, S.; Bagiu, I.C.; Vulcanescu, D.D.; Horhat, F.G.; Sorop, V.B.; Diaconu, M.; Sorop, M.I.; et al. Innovative Biosensing Approaches for Swift Identification of Candida Species, Intrusive Pathogenic Organisms. Life 2023, 13, 2099. https://doi.org/10.3390/ life13102099 | es_ES |
dc.identifier.issn | 2075-1729 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/15734 | |
dc.description.abstract | Candida is the largest genus of medically significant fungi. Although most of its members are commensals, residing harmlessly in human bodies, some are opportunistic and dangerously invasive. These have the ability to cause severe nosocomial candidiasis and candidemia that affect the viscera and bloodstream. A prompt diagnosis will lead to a successful treatment modality. The smart solution of biosensing technologies for rapid and precise detection of Candida species has made remarkable progress. The development of point-of-care (POC) biosensor devices involves sensor precision down to pico-/femtogram level, cost-effectiveness, portability, rapidity, and user-friendliness. However, futuristic diagnostics will depend on exploiting technologies such as multiplexing for high-throughput screening, CRISPR, artificial intelligence (AI), neural networks, the Internet of Things (IoT), and cloud computing of medical databases. This review gives an insight into different biosensor technologies designed for the detection of medically significant Candida species, especially Candida albicans and C. auris, and their applications in the medical setting. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Life | es_ES |
dc.relation.ispartofseries | ;vol.13, nº 10 | |
dc.relation.uri | https://www.mdpi.com/2075-1729/13/10/2099 | es_ES |
dc.rights | openAccess | es_ES |
dc.subject | Candida | es_ES |
dc.subject | biosensor | es_ES |
dc.subject | diagnostic | es_ES |
dc.subject | fungi | es_ES |
dc.subject | rapid detection | es_ES |
dc.subject | JCR | es_ES |
dc.subject | WOS | es_ES |
dc.title | Innovative Biosensing Approaches for Swift Identification of Candida Species, Intrusive Pathogenic Organisms | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.3390/life13102099 |