• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Large Language Models for in Situ Knowledge Documentation and Access With Augmented Reality

    Autor: 
    Izquierdo-Domenech, Juan
    ;
    Linares-Pellicer, Jordi
    ;
    Ferri-Molla, Isabel
    Fecha: 
    09/2023
    Palabra clave: 
    augmented reality; deep learning; multimodal; large language models; transformer; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Citación: 
    J. Izquierdo-Domenech, J. Linares-Pellicer, I. Ferri-Molla. Large Language Models for in Situ Knowledge Documentation and Access With Augmented Reality, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.09.002
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15340
    DOI: 
    https://doi.org/10.9781/ijimai.2023.09.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3378
    Open Access
    Resumen:
    Augmented reality (AR) has become a powerful tool for assisting operators in complex environments, such as shop floors, laboratories, and industrial settings. By displaying synthetic visual elements anchored in real environments and providing information for specific tasks, AR helps to improve efficiency and accuracy. However, a common bottleneck in these environments is introducing all necessary information, which often requires predefined structured formats and needs more ability for multimodal and Natural Language (NL) interaction. This work proposes a new method for dynamically documenting complex environments using AR in a multimodal, non-structured, and interactive manner. Our method employs Large Language Models (LLMs) to allow experts to describe elements from the real environment in NL and select corresponding AR elements in a dynamic and iterative process. This enables a more natural and flexible way of introducing information, allowing experts to describe the environment in their own words rather than being constrained by a predetermined structure. Any operator can then ask about any aspect of the environment in NL to receive a response and visual guidance from the AR system, thus allowing for a more natural and flexible way of introducing and retrieving information. These capabilities ultimately improve the effectiveness and efficiency of tasks in complex environments.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_09_002.pdf
    Tamaño: 1.856Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    99
    330
    217
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    123
    269
    155

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Virtual Reality and Language Models, a New Frontier in Learning 

      Izquierdo-Domenech, Juan; Linares-Pellicer, Jordi; Ferri-Molla, Isabel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2024)
      The proposed research introduces an innovative Virtual Reality (VR) and Large Language Model (LLM) architecture to enhance the learning process across diverse educational contexts, ranging from school to industrial settings. ...
    • COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity—A collaborative international study 

      Fernández‐Aranda, Fernando; Munguía, Lucero; Mestre-Bach, Gemma ; Steward, Trevor; Etxandi, Mikel; Baenas, Isabel; Granero, Roser; Sánchez, Isabel; Ortega, Emilio; Andreu, Alba; Moize, Violeta L.; Fernández‐Real, José M.; Tinahones, Francisco J.; Diegüez, Carlos; Frühbeck, Gema; Le Grange, Daniel; Tchanturia, Kate; Karwautz, Andreas; Zeiler, Michael; Favaro, Ángela; Claes, Laurence; Luyckx, Koen; Shekriladze, Ia; Serrano‐Troncoso, Eduardo; Rangil, Teresa; Loran Meler, Maria Eulalia; Soriano‐Pacheco, José; Carceller‐Sindreu, Mar; Bujalance‐Arguijo, Sara; Lozano, Meritxell; Linares, Raquel; Gudiol, Carlota; Carratala, Jordi; Sánchez‐González, Jéssica; Machado, Paulo PP; Håkansson, Anders; Túry, Ferenc; Pászthy, Bea; Stein, Daniel; Papezová, Hana; Bax, Brigita; Borisenkov, Mikhail F.; Popov, Sergey V.; Kim, Youl‐Ri; Nakazato, Michiko; Godart, Nathalie; van Voren, Robert; Ilnytska, Tetiana; Chen, Jue; Rowlands, Katie; Treasure, Janet; Jiménez‐Murcia, Susana (European Eating Disorders Review, 2020)
      Confinement during the COVID-19 pandemic is expected to have a serious and complex impact on the mental health of patients with an eating disorder (ED) and of patients with obesity. The present manuscript has the following ...
    • Impact of COVID-19 Lockdown in Eating Disorders: A Multicentre Collaborative International Study 

      Baenas, Isabel; Etxandi, Mikel; Munguía, Lucero; Granero, Roser; Mestre-Bach, Gemma ; Sánchez, Isabel; Ortega, Emilio; Andreu, Alba; Moize, Violeta L.; Fernández-Real, Jose-Manuel; Tinahones, Francisco J.; Diéguez, Carlos; Frühbeck, Gema; Le Grange, Daniel; Tchanturia, Kate; Karwautz, Andreas; Zeiler, Michael; Imgart, Hartmut; Zanko, Annika; Favaro, Ángela; Claes, Laurence; Shekriladze, Ia; Serrano‐Troncoso, Eduardo; Cecilia-Costa, Raquel; Rangil, Teresa; Loran Meler, Maria Eulalia; Soriano‐Pacheco, José; Carceller‐Sindreu, Mar; Navarrete, Rosa; Lozano, Meritxell; Linares, Raquel; Gudiol, Carlota; Carratala, Jordi; Plana, María T.; Graell, Montserrat; González-Parra, David; Gómez-del Barrio, José A.; Sepúlveda, Ana R.; Sánchez-González, Jéssica; Machado, Paulo PP; Håkansson, Anders; Túry, Ferenc; Pászthy, Bea; Stein, Daniel; Papezová, Hana; Gricova, Jana; Bax, Brigita; Borisenkov, Mikhail F.; Popov, Sergey V.; Gubin, Denis G.; Petrov, Ivan M.; Isakova, Dilara; Mustafina, Svetlana V.; Kim, Youl‐Ri; Nakazato, Michiko; Godart, Nathalie; van Voren, Robert; Ilnytska, Tetiana; Chen, Jue; Rowlands, Katie; Voderholzer, Ulrich; Monteleone, Alessio M.; Treasure, Janet; Jiménez-Murcia, Susana; Fernández-Aranda, Fernando (Nutrients, 01/2022)
      Background. The COVID-19 lockdown has had a significant impact on mental health. Patients with eating disorders (ED) have been particularly vulnerable. Aims. (1) To explore changes in eating-related symptoms and general ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja