Mostrar el registro sencillo del ítem

dc.contributor.authorIzquierdo-Domenech, Juan
dc.contributor.authorLinares-Pellicer, Jordi
dc.contributor.authorFerri-Molla, Isabel
dc.date2023-09
dc.date.accessioned2023-10-02T15:57:32Z
dc.date.available2023-10-02T15:57:32Z
dc.identifier.citationJ. Izquierdo-Domenech, J. Linares-Pellicer, I. Ferri-Molla. Large Language Models for in Situ Knowledge Documentation and Access With Augmented Reality, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.09.002es_ES
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15340
dc.description.abstractAugmented reality (AR) has become a powerful tool for assisting operators in complex environments, such as shop floors, laboratories, and industrial settings. By displaying synthetic visual elements anchored in real environments and providing information for specific tasks, AR helps to improve efficiency and accuracy. However, a common bottleneck in these environments is introducing all necessary information, which often requires predefined structured formats and needs more ability for multimodal and Natural Language (NL) interaction. This work proposes a new method for dynamically documenting complex environments using AR in a multimodal, non-structured, and interactive manner. Our method employs Large Language Models (LLMs) to allow experts to describe elements from the real environment in NL and select corresponding AR elements in a dynamic and iterative process. This enables a more natural and flexible way of introducing information, allowing experts to describe the environment in their own words rather than being constrained by a predetermined structure. Any operator can then ask about any aspect of the environment in NL to receive a response and visual guidance from the AR system, thus allowing for a more natural and flexible way of introducing and retrieving information. These capabilities ultimately improve the effectiveness and efficiency of tasks in complex environments.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligencees_ES
dc.relation.ispartofseries;In Press
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3378es_ES
dc.rightsopenAccesses_ES
dc.subjectaugmented realityes_ES
dc.subjectdeep learninges_ES
dc.subjectmultimodales_ES
dc.subjectlarge language modelses_ES
dc.subjecttransformeres_ES
dc.subjectIJIMAIes_ES
dc.titleLarge Language Models for in Situ Knowledge Documentation and Access With Augmented Realityes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2023.09.002


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem