• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 3, september 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 3, september 2023
    • Ver ítem

    An Investigation Into Different Text Representations to Train an Artificial Immune Network for Clustering Texts

    Autor: 
    Ferraria, Matheus A.
    ;
    Ferraria, Vinicius A.
    ;
    de Castro, Leandro N.
    Fecha: 
    09/2023
    Palabra clave: 
    artificial immune system; artificial immune network; clonal selection; natural computing; text clustering; text structuring; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15216
    DOI: 
    https://doi.org/10.9781/ijimai.2023.08.006
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3370
    Open Access
    Resumen:
    Extracting knowledge from text data is a complex task that is usually performed by first structuring the texts and then applying machine learning algorithms, or by using specific deep architectures capable of dealing directly with the raw text data. The traditional approach to structure texts is called Bag of Words (BoW) and consists of transforming each word in a document into a dimension (variable) in the structured data. Another approach uses grammatical classes to categorize the words and, thus, limit the dimension of the structured data to the number of grammatical categories. Another form of structuring text data for analysis is by using a distributed representation of words, sentences, or documents with methods like Word2Vec, Doc2Vec, and SBERT. This paper investigates four classes of text structuring methods to prepare documents for being clustered by an artificial immune system called aiNet. The goal is to assess the influence of each structuring method in the quality of the clustering obtained by the system and how methods that belong to the same type of representation differ from each other, for example both LIWC and MRC are considered grammarbased models but each one of them uses completely different dictionaries to generate its representation. By using internal clustering measures, our results showed that vector space models, on average, presented the best results for the datasets chosen, followed closely by the state of the art SBERT model, and MRC had the overall worst performance. We could also observe a consistency in the number of clusters generated by each representation and for each dataset, having SBERT as the model that presented a number of clusters closer to the original number of classes in the data.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_3_5.pdf
    Tamaño: 345.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 3, september 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    41
    127
    175
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    41
    63
    52

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Social anxiety and academic performance during COVID-19 in schoolchildren 

      Prieto Andreu, Joel Manuel; Salas Sánchez, Jesús; Tierno Cordón, Javier; Álvarez-Kurogi, Leandro; González-García, Higinio; Castro López, Rosario (PloS one, 2023)
      The purpose of the present study was to determine the perception of schoolchildren whether their academic performance improved or worsened during the pandemic, analyzing their social anxiety, gender, use of masks in the ...
    • Social distancing and injuries in students during physical exercise and/or sport 

      Álvarez-Kurogi, Leandro; Salas Sánchez, Jesús; Tierno Cordón, Javier; Castro López, Rosario; Prieto Andreu, Joel Manuel (Cultura, Ciencia y Deporte, 2023)
      En los últimos dos años, la literatura científica ha revelado las repercusiones físicas, psicológicas y afectivo-sociales negativas del confinamiento y de las medidas de distanciamiento social, siendo el ámbito deportivo, ...
    • Relationships among COVID-19 causal factors perceived by children, basic psychological needs and social anxiety 

      González-García, Higinio; Álvarez-Kurogi, Leandro; Prieto Andreu, Joel Manuel; Tierno Cordón, Javier; Castro López, Rosario; Salas Sánchez, Jesús (Brain, Cognition and Mental Health, 2025)
      Background: The pandemic caused by COVID-19 had a great impact on our society as the lives of children have been affected, as well as their psychological health and social anxiety. Objective: To examine whether COVID-19 ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja