Automatic Cell Counting With YOLOv5: A Fluorescence Microscopy Approach
Autor:
López Flórez, Sebastián
; González-Briones, Alfonso
; Hernández, Guillermo
; Ramos, Carlos
; de la Prieta, Fernando
Fecha:
09/2023Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial IntelligenceTipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/3358Resumen:
Counting cells in a Neubauer chamber on microbiological culture plates is a laborious task that depends on technical experience. As a result, efforts have been made to advance computer vision-based approaches, increasing efficiency and reliability through quantitative analysis of microorganisms and calculation of their characteristics, biomass concentration, and biological activity. However, variability that still persists in these processes poses a challenge that is yet to be overcome. In this work, we propose a solution adopting a YOLOv5 network model for automatic cell recognition and counting in a case study for laboratory cell detection using images from a CytoSMART Exact FL microscope. In this context, a dataset of 21 expert-labeled cell images was created, along with an extra Sperm DetectionV dataset of 1024 images for transfer learning. The dataset was trained using the pretrained YOLOv5 algorithm with the Sperm DetectionV database. A laboratory test was also performed to confirm result’s viability. Compared to YOLOv4, the current YOLOv5 model had accuracy, precision, recall, and F1 scores of 92%, 84%, 91%, and 87%, respectively. The YOLOv5 algorithm was also used for cell counting and compared to the current segmentation-based U-Net and OpenCV model that has been implemented. In conclusion, the proposed model successfully recognizes and counts the different types of cells present in the laboratory.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
132 |
412 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
170 |
399 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Applicability domains of neural networks for toxicity prediction
Pérez-Santín, Efrén; de-la-Fuente-Valentín, Luis; González García, Marian; Segovia Bravo, Kharla Andreina; López Hernández, Fernando Carlos; López Sánchez, José Ignacio (AIMS Mathematics, 2023)In this paper, the term “applicability domain” refers to the range of chemical compounds for which the statistical quantitative structure-activity relationship (QSAR) model can accurately predict their toxicity. This is a ... -
Graffiti Identification System Using Low-Cost Sensors
García García, Miguel; González Arrieta, María Angélica; Rodríguez González, Sara; Márquez-Sánchez, Sergio; Da Silva Ramos, Carlos Fernando (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2024)This article introduces the possibility of studying graffiti using a colorimeter developed with Arduino hardware technology according to the Do It Yourself (DIY) philosophy. Through the obtained Red Green Blue (RGB) data ... -
Análisis de sentimiento a las opiniones generadas en la red social twitter: Marketing Político
Romero Moreno, Fredy Yarney; Sanchez Martelo, Carlos Augusto; Alfonso Corredor, Breed Yeet ; Sanchez Cifuentes, Joaquin Fernando; Ospina López, Juan Pablo (RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020)Las opiniones que se generan en la red social Twitter son un contenido con carga emocional que, por su naturaleza no estructurada, requieren ser analizadas y exploradas mediante la utilización de técnicas para el análisis ...