• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Improving Retrieval Performance of Case Based Reasoning Systems by Fuzzy Clustering

    Autor: 
    Saadi, F.
    ;
    Atmani, Baghdad
    ;
    Henni, F.
    Fecha: 
    07/2023
    Palabra clave: 
    case based reasoning; case retrieval; classification; data mining; decision support system fuzzy logic; Disease-Modifying Therapy (DMT); kmeans; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15130
    DOI: 
    https://doi.org/10.9781/ijimai.2023.07.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3340
    Open Access
    Resumen:
    Case-based reasoning (CBR), which is a classical reasoning methodology, has been put to use. Its application has allowed significant progress in resolving problems related to the diagnosis, therapy, and prediction of diseases. However, this methodology has shown some complicated problems that must be resolved, including determining a representation form for the case (complexity, uncertainty, and vagueness of medical information), preventing the case base from the infinite growth of generated medical information and selecting the best retrieval technique. These limitations have pushed researchers to think about other ways of solving problems, and we are recently witnessing the integration of CBR with other techniques such as data mining. In this article, we develop a new approach integrating clustering (Fuzzy C-Means (FCM) and K-Means) in the CBR cycle. Clustering is one of the crucial challenges and has been successfully used in many areas to develop innate structures and hidden patterns for data grouping [1]. The objective of the proposed approach is to solve the limitations of CBR and improve it, particularly in the search for similar cases (retrieval step). The approach is tested with the publicly available immunotherapy dataset. The results of the experimentations show that the integration of the FCM algorithm in the retrieval step reduces the search space (the large volume of information), resolves the problem of the vagueness of medical information, speeds up the calculation and response time, and increases the search efficiency, which further improves the performance of the retrieval step and, consequently, the CBR system.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_07_002.pdf
    Tamaño: 1.008Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    47
    121
    153
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    48
    126
    158

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Combining Fuzzy AHP with GIS and Decision Rules for Industrial Site Selection 

      Taibi, Aissa; Atmani, Baghdad (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      This study combines Fuzzy Analytic Hierarchy Process (FAHP), Geographic Information System (GIS) and Decision rules to provide decision makers with a ranking model for industrial sites in Algeria. A ranking of the suitable ...
    • Contribution to the Association Rules Visualization for Decision Support: A Combined Use Between Boolean Modeling and the Colored 2D Matrix 

      Atmani, Baghdad; Benhacine, Fatima Zohra; Abdelouhab, Fawzia Zohra (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      In the present paper we aim to study the visual decision support based on Cellular machine CASI (Cellular Automata for Symbolic Induction). The purpose is to improve the visualization of large sets of association rules, ...
    • Diabetes Diagnosis by Case-Based Reasoning and Fuzzy Logic 

      Atmani, Baghdad; Benamina, Mohammed; Benbelkacem, Sofia (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2018)
      In the medical field, experts’ knowledge is based on experience, theoretical knowledge and rules. Case-based reasoning is a problem-solving paradigm which is based on past experiences. For this purpose, a large number of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja