Mostrar el registro sencillo del ítem

dc.contributor.authorLlopis, Juan Alberto
dc.contributor.authorFernández-García, Antonio Jesús
dc.contributor.authorCriado, Javier
dc.contributor.authorIribarne, Luis
dc.date2022
dc.date.accessioned2023-03-23T13:41:30Z
dc.date.available2023-03-23T13:41:30Z
dc.identifier.citationJ. A. Llopis, A. J. Fernández-García, J. Criado and L. Iribarne, "Matching user queries in natural language with Cyber-Physical Systems using deep learning through a Transformer approach," 2022 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Biarritz, France, 2022, pp. 1-6, doi: 10.1109/INISTA55318.2022.9894230.es_ES
dc.identifier.isbn9781665498104
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14410
dc.description.abstractIoT devices, as a result of technological advancements, may have different ways of operating and communicating despite having the same features. Therefore, finding a specific device among the whole of deployed devices can be a difficult task. To help find devices in an efficient and timely way, we propose a recommender system using deep learning for matching W3C Web of Things artifacts (called as WoT devices) with natural language queries. The proposal uses the Transformer algorithm to study the usage of deep learning to facilitate searching for devices, assuming that the model can be used as a recommendation tool to match WoT devices in Cyber-Physical Systems.es_ES
dc.language.isoenges_ES
dc.publisher16th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2022es_ES
dc.relation.urihttps://ieeexplore.ieee.org/document/9894230es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectdeep learninges_ES
dc.subjectnatural languagees_ES
dc.subjectrecommender systemes_ES
dc.subjecttransformeres_ES
dc.subjectweb of thingses_ES
dc.subjectScopus(2)es_ES
dc.titleMatching user queries in natural language with Cyber-Physical Systems using deep learning through a Transformer approaches_ES
dc.typeconferenceObjectes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1109/INISTA55318.2022.9894230


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem