• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Autor: 
    Suruliandi, A.
    ;
    Idhaya, T.
    ;
    Raja, S. P.
    Fecha: 
    06/2024
    Palabra clave: 
    chemogenomics; drugs; machine learning; target finding; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    A. Suruliandi, T. Idhaya, S. P. Raja (2024). "Drug Target Interaction Prediction Using Machine Learning Techniques – A Review", International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, issue Regular Issue, no. 6, pp. 86-100. https://doi.org/10.9781/ijimai.2022.11.002
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14363
    DOI: 
    https://doi.org/10.9781/ijimai.2022.11.002
    Open Access
    Resumen:
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Drug Target Interaction Prediction Using Machine Learning Techniques.pdf
    Tamaño: 2.391Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 6, june 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    200
    907
    946
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    220
    759
    654

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation 

      Suruliandi, A.; Kasthuri, A.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Face annotation is a naming procedure that assigns the correct name to a person emerging from an image. Faces that are manually annotated by people in online applications include incorrect labels, giving rise to the issue ...
    • Libertarias: el discurso hedonista de Vicente Aranda 

      Berenguer Ubeda, Jorge; Rajas, Mario; Miranda, Francisco Javier (Área Abierta, 05/2019)
      Este artículo aborda la poética de Vicente Aranda en su filme Libertarias (1996). Desde la perspectiva metodológica del análisis textual fílmico, se estudia el discurso narrativo y la construcción formal de la obra. Las ...
    • A Word Embedding Based Approach for Focused Web Crawling Using the Recurrent Neural Network 

      Dhanith, P. R. Joe; Surendiran, B.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Learning-based focused crawlers download relevant uniform resource locators (URLs) from the web for a specific topic. Several studies have used the term frequency-inverse document frequency (TF-IDF) weighted cosine vector ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja