• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    An Empirical Evaluation of Machine Learning Techniques for Crop Prediction

    Autor: 
    Mariammal, G.
    ;
    Suruliandi, A.
    ;
    Raja, S. P.
    ;
    Poongothai, E.
    Fecha: 
    12/2023
    Palabra clave: 
    classification; environment; character identification; machine learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14353
    DOI: 
    https://doi.org/10.9781/ijimai.2022.12.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3235
    Open Access
    Resumen:
    Agriculture is the primary source driving the economic growth of every country worldwide. Crop prediction, which is critical to agriculture, depends on the soil and environment. Nutrient levels differ from area to area and greatly influence in crop cultivation. Earlier, the tasks of crop forecast and cultivation were undertaken by farmers themselves. Today, however, crop prediction is determined by climatic variations. This is where machine learning algorithms step in to identify the most relevant crop for cultivation. This research undertakes an empirical analysis using the bagging, random forest, support vector machine, decision tree, Naïve Bayes and k-nearest neighbor classifiers to predict the most appropriate cultivable crop for certain areas, based on environment and soil traits. Further, the suitability of the classifiers is examined using a GitHub prisoners’ dataset. The experimental results of all the classification techniques were assessed to show that the ensemble outclassed the rest with respect to every performance metric.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_9.pdf
    Tamaño: 838.0Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    92
    125
    64
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    31
    87
    13

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation 

      Suruliandi, A.; Kasthuri, A.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Face annotation is a naming procedure that assigns the correct name to a person emerging from an image. Faces that are manually annotated by people in online applications include incorrect labels, giving rise to the issue ...
    • Libertarias: el discurso hedonista de Vicente Aranda 

      Berenguer Ubeda, Jorge; Rajas, Mario; Miranda, Francisco Javier (Área Abierta, 05/2019)
      Este artículo aborda la poética de Vicente Aranda en su filme Libertarias (1996). Desde la perspectiva metodológica del análisis textual fílmico, se estudia el discurso narrativo y la construcción formal de la obra. Las ...
    • A Word Embedding Based Approach for Focused Web Crawling Using the Recurrent Neural Network 

      Dhanith, P. R. Joe; Surendiran, B.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Learning-based focused crawlers download relevant uniform resource locators (URLs) from the web for a specific topic. Several studies have used the term frequency-inverse document frequency (TF-IDF) weighted cosine vector ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja