Mostrar el registro sencillo del ítem

dc.contributor.authorMariammal, G.
dc.contributor.authorSuruliandi, A.
dc.contributor.authorRaja, S. P.
dc.contributor.authorPoongothai, E.
dc.date2023-12
dc.date.accessioned2023-03-14T10:18:38Z
dc.date.available2023-03-14T10:18:38Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14353
dc.description.abstractAgriculture is the primary source driving the economic growth of every country worldwide. Crop prediction, which is critical to agriculture, depends on the soil and environment. Nutrient levels differ from area to area and greatly influence in crop cultivation. Earlier, the tasks of crop forecast and cultivation were undertaken by farmers themselves. Today, however, crop prediction is determined by climatic variations. This is where machine learning algorithms step in to identify the most relevant crop for cultivation. This research undertakes an empirical analysis using the bagging, random forest, support vector machine, decision tree, Naïve Bayes and k-nearest neighbor classifiers to predict the most appropriate cultivable crop for certain areas, based on environment and soil traits. Further, the suitability of the classifiers is examined using a GitHub prisoners’ dataset. The experimental results of all the classification techniques were assessed to show that the ensemble outclassed the rest with respect to every performance metric.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 8, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3235es_ES
dc.rightsopenAccesses_ES
dc.subjectclassificationes_ES
dc.subjectenvironmentes_ES
dc.subjectcharacter identificationes_ES
dc.subjectmachine learninges_ES
dc.subjectIJIMAIes_ES
dc.titleAn Empirical Evaluation of Machine Learning Techniques for Crop Predictiones_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2022.12.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem