• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    A Comparative Evaluation of Bayesian Networks Structure Learning Using Falcon Optimization Algorithm

    Autor: 
    Qasim Awla, Hoshang
    ;
    Wahhab Kareem, Shahab
    ;
    Salih Mohammed, Amin
    Fecha: 
    06/2023
    Palabra clave: 
    Bayesian network; optimization search algorithm; search; structure learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14352
    DOI: 
    https://doi.org/10.9781/ijimai.2023.01.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3244
    Open Access
    Resumen:
    Bayesian networks are analytical models that may represent probabilistic dependent connections among variables and are useful in machine learning for generating knowledge structure. Due to the vastness of the solution space, learning Bayesian network (BN) structures from data is an NP-hard problem. The score and search technique is one Bayesian Network structure learning strategy. In Bayesian network structure learning the Falcon Optimization Algorithm (FOA) is presented and evaluated by the authors. Inserting, Reversing, Moving, and Deleting, are used in the method to create the FOA for finding the best structural solution. The FOA algorithm is based on the falcon's searching technique during drought conditions. The suggested technique is compared to the score metric function of Pigeon Inspired search algorithm, Greedy Search, and Antlion optimization search algorithm. The performance of these techniques in terms of confusion matrices was further evaluated by the authors using a variety of benchmark data sets. The Falcon optimization algorithm outperforms the previous algorithms and generates higher scores and accuracy values, as evidenced by the results of our experiments.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_8.pdf
    Tamaño: 1.883Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    140
    147
    349
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    98
    230
    118

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task 

      Settouti, Nesma; El Amine Bechar, Mohammed; Amine Chikh, Mohammed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application ...
    • Multilayer Perceptron: Architecture Optimization and Training 

      Ramchoun, Hassan; Ghanou, Youssef; Ettaouil, Mohamed; Janati Idrissi, Mohammed Amine (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      The multilayer perceptron has a large wide of classification and regression applications in many fields: pattern recognition, voice and classification problems. But the architecture choice has a great impact on the convergence ...
    • Deep Belief Network and Auto-Encoder for Face Classification 

      Bouchra, Nassih; Mohammed, Ngadi; Nabil, Hmina; Aouatif, Amine (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      The Deep Learning models have drawn ever-increasing research interest owing to their intrinsic capability of overcoming the drawback of traditional algorithm. Hence, we have adopted the representative Deep Learning methods ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja