• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem

    Deep Belief Network and Auto-Encoder for Face Classification

    Autor: 
    Bouchra, Nassih
    ;
    Mohammed, Ngadi
    ;
    Nabil, Hmina
    ;
    Aouatif, Amine
    Fecha: 
    06/2019
    Palabra clave: 
    facial recognition; neural network; deep learning; deep belief network; stacked auto-encoder; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12501
    DOI: 
    http://doi.org/10.9781/ijimai.2018.06.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2679
    Open Access
    Resumen:
    The Deep Learning models have drawn ever-increasing research interest owing to their intrinsic capability of overcoming the drawback of traditional algorithm. Hence, we have adopted the representative Deep Learning methods which are Deep Belief Network (DBN) and Stacked Auto-Encoder (SAE), to initialize deep supervised Neural Networks (NN), besides of Back Propagation Neural Networks (BPNN) applied to face classification task. Moreover, our contribution is to extract hierarchical representations of face image based on the Deep Learning models which are: DBN, SAE and BPNN. Then, the extracted feature vectors of each model are used as input of NN classifier. Next, to test our approach and evaluate its performance, a simulation series of experiments were performed on two facial databases: BOSS and MIT. Our proposed approach which is (DBN,NN) has a significant improvement on the classification error rate compared to (SAE,NN) and BPNN which we get 1.14% and 1.96% in terms of error rate with BOSS and MIT respectively.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_5_3_pdf_64780.pdf
    Tamaño: 1.130Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 5, june 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    73
    80
    121
    72
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    56
    33
    78
    29

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task 

      Settouti, Nesma; El Amine Bechar, Mohammed; Amine Chikh, Mohammed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application ...
    • Multilayer Perceptron: Architecture Optimization and Training 

      Ramchoun, Hassan; Ghanou, Youssef; Ettaouil, Mohamed; Janati Idrissi, Mohammed Amine (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      The multilayer perceptron has a large wide of classification and regression applications in many fields: pattern recognition, voice and classification problems. But the architecture choice has a great impact on the convergence ...
    • A Comparative Evaluation of Bayesian Networks Structure Learning Using Falcon Optimization Algorithm 

      Qasim Awla, Hoshang; Wahhab Kareem, Shahab; Salih Mohammed, Amin (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2023)
      Bayesian networks are analytical models that may represent probabilistic dependent connections among variables and are useful in machine learning for generating knowledge structure. Due to the vastness of the solution ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja