• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    Deep Transfer Learning-Based Automated Identification of Bird Song

    Autor: 
    Das, Nabanita
    ;
    Padhy, Neelamadhab
    ;
    Dey, Nilanjan
    ;
    Bhattacharya, Sudipta
    ;
    Tavares, Joao Manuel R. S.
    Fecha: 
    12/2023
    Palabra clave: 
    species evaluation; convolutional neural network (CNN); data augmentation; inception; transfer learning; VGG; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14350
    DOI: 
    https://doi.org/10.9781/ijimai.2023.01.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3241
    Open Access
    Resumen:
    Bird species identification is becoming increasingly crucial for avian biodiversity conservation and assisting ornithologists in quantifying the presence of birds in a given area. Convolutional Neural Networks (CNNs) are advanced deep learning algorithms that have proven to perform well in speech classification. However, developing an accurate deep learning classifier requires a large amount of data. Such a large amount of data on endemic or endangered creatures is frequently difficult to gathered. Also, in some other fields, such as bioinformatics and robotics, the high cost of data collection and expensive annotation limit their progress, so large, well-annotated data creating a set is also difficult. A transfer learning method can alleviate overfitting concerns in a deep learning model. This feature serves as the inspiration for transfer learning, which was created to deal with situations where the data are distributed across a variety of functional domains. In this study, the ability of deep transfer models such as VGG16, VGG19 and InceptionV3 to effectively extract and discriminate speech signals from different species of birds with high prediction accuracy is explored. The obtained accuracies using VGG16, VGG19 and InceptionV3 were equal to 78, 61.9 and 85%, respectively, which are very promising.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_3.pdf
    Tamaño: 3.612Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    203
    269
    172
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    82
    160
    52

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Effect of optimization framework on rigid and non-rigid multimodal image registration 

      Chakraborty, Sayan; Pradhan, Ratika; Dey, Nilanjan; González-Crespo, Rubén; Tavares, Joao Manuel R. S. (Scienceasias, 2022)
      The process of transforming or aligning two images is known as image registration. In the present era, image registration is one of the most popular transformation tools in case of, for example, satellite as well as medical ...
    • Brain fMRI segmentation under emotion stimuli incorporating attention-based deep convolutional neural networks 

      Liu, Jie; Dey, Nilanjan; Das, Nabanita; González-Crespo, Rubén ; Shi, Fuqian; Liu, Chanjuan (Applied Soft Computing, 2022)
      Functional magnetic resonance imaging (fMRI) is widely used for clinical examinations, diagnosis, and treatment. By segmenting fMRI images, large-scale medical image data can be processed more efficiently. Most deep learning ...
    • A non-linear multi-objective technique for hybrid peer-to-peer communication 

      Das, Santosh Kumar; Dey, Nilanjan; González-Crespo, Rubén (Information Sciences, 2023)
      This work proposes a strategy management technique based on hybrid peer-to-peer communication system. The main techniques used in the P2PC are: (i) Multi-objective optimization, (ii) Game theory technique, (iii) Non-linear ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja