• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    Quantitative Measures for Medical Fundus and Mammography Images Enhancement

    Autor: 
    Intriago-Pazmiño, Monserrate
    ;
    Ibarra-Fiallo, Julio
    ;
    Guzmán-Castillo, Adán
    ;
    Alonso-Calvo, Raúl
    ;
    Crespo, José
    Fecha: 
    12/2023
    Palabra clave: 
    contrast; medical images; mammogram; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14338
    DOI: 
    https://doi.org/10.9781/ijimai.2022.12.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3229
    Open Access
    Resumen:
    Enhancing the visibility of medical images is part of the initial or preprocessing phase within a computer vision system. This image preparation is essential for subsequent system tasks such as segmentation or classification. Therefore, quantitative validation of medical image preprocessing is crucial. In this work, four metrics are studied: Contrast Improvement Index (CII), Enhancement Measurement Estimation (EME), Entropy EME (EMEE), and Entropy. The objective is to find the best parameters for each metric. The study is performed on five medical image datasets, three retinal fundus sets (DRIVE, ROPFI, HRF-POORQ), and two mammography image sets (MIAS, DDSM). Metrics are calculated using a binary mask image to discard the background. Using the fundus and mask datasets, the best results were obtained with the EMEE and EMEE metrics, which achieved mean improvements of up to 186% and 75%, respectively. For mammography datasets and using masks of the region of interest, the two metrics with the highest percentage improvement were CII and EMEE, which obtained means of up to 396% and 129%, respectively. Based on the experimental results provided, we can conclude that EMEE, EME, and CII metrics can achieve better enhancement assessment in this type of medical imaging.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_11.pdf
    Tamaño: 5.428Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    65
    130
    139
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33
    60
    57

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Effective filter for common injection attacks in online web applications 

      Ibarra-Fiallos, Santiago; Bermejo-Higuera, Javier; Intriago-Pazmiño, Monserrate; Bermejo Higuera, Juan Ramón; Sicilia, Juan Antonio; Cubo Villalba, Javier (IEEE Access, 2021)
      Injection attacks against web applications are still frequent, and organizations like OWASP places them within the Top Ten of security risks to web applications. The main goal of this work is to contribute to the community ...
    • Design thinking application methodology for pediatric service innovation 

      Serrano Cárdenas, Lizeth Fernanda; Bravo Ibarra, Edna Rocío; Díaz Piraquive, Flor Nancy; Rozo-Rojas, Ivanhoe; González-Crespo, Rubén ; Calvo, Ana (Communications in Computer and Information Science, 2018)
      Design Thinking is defined as a methodology that facilitates the generation and implementation of innovative ideas contributing to competitiveness in the current dynamic context. The aim of this article delves into the ...
    • Inteligencia emocional como mediador del craving y el riesgo de recaída en adultos en tratamiento por consumo de alcohol 

      Villarreal-Mata, Julia Lizeth; Sánchez-Gómez, Martín; Navarro-Oliva, Edna Idalia Paulina; Alonso Castillo, María Magdalena; Guzmán Facundo, Francisco Rafael; López García, Karla Selene; Bresó Esteve, Edgar (Salud Uninorte, 2022)
      Objetivos: analizar el efecto de craving sobre el riesgo de recaída en adultos en tratamiento por alcohol, considerando la Inteligencia Emocional Percibida (IEP) como mediador. Materiales y métodos: estudio descriptivo, ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja