• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Synthetic Aperture Radar Automatic Target Recognition Based on a Simple Attention Mechanism

    Autor: 
    Ukwuoma, Chiagoziem Chima
    ;
    Zhiguang, Qin
    ;
    Tienin, Bole W.
    ;
    Yussif, Sophyani B.
    ;
    Ejiyi, Chukwuebuka Joseph
    ;
    Urama, Gilbert C.
    ;
    Ukwuoma, Chibueze D.
    ;
    Chikwendu, Ijeoma Amuche
    Fecha: 
    02/2023
    Palabra clave: 
    attention model; convolutional neural network (CNN); target recognition; rynthetic aperture radar; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14337
    DOI: 
    https://doi.org/10.9781/ijimai.2023.02.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3265
    Open Access
    Resumen:
    A simple but effective channel attention module is proposed for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR). The channel attention technique has shown recent success in improving Deep Convolutional Neural Networks (CNN). The resolution of SAR images does not surpass optical images thus information flow of SAR images becomes relatively poor when the network depth is raised blindly leading to a serious gradients explosion/vanishing. To resolve the issue of SAR image recognition efficiency and ambiguity trade-off, we proposed a simple Channel Attention module into the ResNet Architecture as our network backbone, which utilizes few parameters yet results in a performance gain. Our simple attention module, which follows the implementation of Efficient Channel Attention, shows that avoiding dimensionality reduction is essential for learning as well as an appropriate cross-channel interaction can preserve performance and decrease model complexity. We also explored the One Policy Learning Rate on the ResNet-50 architecture and compared it with the proposed attention based ResNet-50 architecture. A thorough analysis of the MSTAR Dataset demonstrates the efficacy of the suggested strategy over the most recent findings. With the Attention-based model and the One Policy Learning Rate-based architecture, we were able to obtain recognition rate of 100% and 99.8%, respectively.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_02_004.pdf
    Tamaño: 4.178Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    35
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    52

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Comparative Analysis of Building Insurance Prediction Using Some Machine Learning Algorithms 

      Ejiyi, Chukwuebuka Joseph; Qin, Zhen; Salako, Abdulhaq Adetunji; Happy, Monday Nkanta; Nneji, Grace Ugochi; Ukwuoma, Chiagoziem Chima; Chikwendu, Ijeoma Amuche; Gen, Ji (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In finance and management, insurance is a product that tends to reduce or eliminate in totality or partially the loss caused due to different risks. Various factors affect house insurance claims, some of which contribute ...
    • A deep learning architecture for power management in smart cities 

      Xin, Qin; Alazab, Mamoun; García Díaz, Vicente; Montenegro-Marin, Carlos Enrique; González-Crespo, Rubén (Elsevier Ltd, 2022)
      Sustainable energy management is an inexpensive approach for improved energy use. However, the research used does not focus on cutting-edge technology possibilities in an Internet of things (IoT). This paper includes the ...
    • AI-based quality of service optimization for multimedia transmission on Internet of Vehicles (IoV) systems 

      Xin, Qin; Alazab, Mamoun; González-Crespo, Rubén ; Montenegro-Marin, Carlos Enrique (Sustainable Energy Technologies and Assessments, 2022)
      Multimedia Communications of Internet of Vehicles (IoV) uses WLAN, NFC and Fifth Generation networks. At the same time, in multimedia communications in healthcare, IoV's essential task is optimizing the quality of experience ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja