• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem

    Comparative Analysis of Building Insurance Prediction Using Some Machine Learning Algorithms

    Autor: 
    Ejiyi, Chukwuebuka Joseph
    ;
    Qin, Zhen
    ;
    Salako, Abdulhaq Adetunji
    ;
    Happy, Monday Nkanta
    ;
    Nneji, Grace Ugochi
    ;
    Ukwuoma, Chiagoziem Chima
    ;
    Chikwendu, Ijeoma Amuche
    ;
    Gen, Ji
    Fecha: 
    03/2022
    Palabra clave: 
    machine learning; prediction; regression; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13139
    DOI: 
    https://doi.org/10.9781/ijimai.2022.02.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3106
    Open Access
    Resumen:
    In finance and management, insurance is a product that tends to reduce or eliminate in totality or partially the loss caused due to different risks. Various factors affect house insurance claims, some of which contribute to formulating insurance policies including specific features that the house has. Machine Learning (ML) when brought into the field of insurance would enable seamless formulation of insurance policies with a better performance which will also save time. Various classification algorithms have been used since they have a long history and have also got some modifications for optimum functionality. To illustrate the performance of each of the ML algorithms that we used here, we analyzed an insurance dataset drawn from Zindi Africa competition which is said to be from Olusola Insurance Company in Lagos Nigeria. This study therefore, compares the performance of Logistic Regression (LR), Decision Tree (DT), K-Nearest Neighbor (KNN), Kernel Support Vector Machine (kSVM), Naïve Bayes (NB), and Random Forest (RF) Regressors on a dataset got from Zindi.africa competition and their performances are checked using not only accuracy and precision metrics but also recall, and F1 score metrics, all displayed on the confusion matrix. The accuracy result shows that logistic regression and Kernel SVM both gave 78% but kSVM outperformed LR in precision with a percentage of 70.8% for kSVM and 64.8% for LR showing that kSVM offered the best result.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_3_7.pdf
    Tamaño: 530.3Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 3, march 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    136
    584
    543
    208
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    150
    707
    346
    136

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Synthetic Aperture Radar Automatic Target Recognition Based on a Simple Attention Mechanism 

      Ukwuoma, Chiagoziem Chima; Zhiguang, Qin; Tienin, Bole W.; Yussif, Sophyani B.; Ejiyi, Chukwuebuka Joseph; Urama, Gilbert C.; Ukwuoma, Chibueze D.; Chikwendu, Ijeoma Amuche (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2023)
      A simple but effective channel attention module is proposed for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR). The channel attention technique has shown recent success in improving Deep Convolutional ...
    • A deep learning architecture for power management in smart cities 

      Xin, Qin; Alazab, Mamoun; García Díaz, Vicente; Montenegro-Marin, Carlos Enrique; González-Crespo, Rubén (Elsevier Ltd, 2022)
      Sustainable energy management is an inexpensive approach for improved energy use. However, the research used does not focus on cutting-edge technology possibilities in an Internet of things (IoT). This paper includes the ...
    • AI-based quality of service optimization for multimedia transmission on Internet of Vehicles (IoV) systems 

      Xin, Qin; Alazab, Mamoun; González-Crespo, Rubén ; Montenegro-Marin, Carlos Enrique (Sustainable Energy Technologies and Assessments, 2022)
      Multimedia Communications of Internet of Vehicles (IoV) uses WLAN, NFC and Fifth Generation networks. At the same time, in multimedia communications in healthcare, IoV's essential task is optimizing the quality of experience ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja