• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    Emotion-Aware Monitoring of Users’ Reaction With a Multi-Perspective Analysis of Long- and Short-Term Topics on Twitter

    Autor: 
    Cavaliere, Danilo
    ;
    Fenza, Giuseppe
    ;
    Loia, Vincenzo
    ;
    Nota, Francesco
    Fecha: 
    12/2023
    Palabra clave: 
    frequent itemsets; multi-perspective topic monitoring; sentiment analysis; users’ reaction prediction; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14336
    DOI: 
    https://doi.org/10.9781/ijimai.2023.02.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3262
    Open Access
    Resumen:
    Social networks, such as Twitter, play like a disinformation spread booster giving the chance to individuals and organizations to influence users’ beliefs on purpose through tweets causing destabilization effects to the community. As a consequence, there is a need for solutions to analyse users’ reactions to topics debated in the community. To this purpose, state-of-the-art methods focus on selecting the most debated topics over time, ignoring less-frequent-discussed topics. In this paper, a framework for users’ reaction and topic analysis is introduced. First the method extracts topics as frequent itemsets of named entities from tweets collected, hence the support over time and RoBERTa-based sentiment analysis are applied to assess the current topic spread and the emotional impact, then a time-grid-based approach allows a granule-level analysis of the collected features that can be exploited for predicting future users’ reactions towards topics. Finally, a three-perspective score function is introduced to build comparative ranked lists of the most relevant topics according to topic sentiment, importance and spread. Experiences demonstrate the potential of the framework on IEEE COVID-19 Tweets Dataset.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_15.pdf
    Tamaño: 1.728Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    121
    169
    99
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    75
    75
    76

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Guest Editorial for the Special Issue "Soft Computing for Smart Cities" 

      Sanjuán Martínez, Óscar ; Fenza, Giuseppe; González-Crespo, Rubén (Journal of multiple-valued logic and soft computing, 2021)
      Smart cities have become the buzzword today, and it offers various smart services such as building automation systems, intelligent grids, smart transportation, and many more. With the advent of the Internet of Things ...
    • Foreword Special Issue on Cognitive Machine Intelligence for Cyber Physical Systems 

      Sanjuán Martínez, Óscar ; Fenza, Giuseppe; González-Crespo, Rubén (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12/2020)
      This special issue entitled "cognitive machie intelligence for Cyber-Physical Systems" addresses under-researched and controversial topics on new emerging themes of cyber-physical systems (CPS).
    • Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network 

      Chan Chiu, Po; Selamat, Ali; Krejcar, Ondrej; Kuok Kuok, King; Herrera-Viedma, Enrique; Fenza, Giuseppe (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja